skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gini, Maria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In multi-agent navigation, agents need to move towards their goal locations while avoiding collisions with other agents and obstacles, often without communication. Existing methods compute motions that are locally optimal but do not account for the aggregated motions of all agents, producing inefficient global behavior especially when agents move in a crowded space. In this work, we develop a method that allows agents to dynamically adapt their behavior to their local conditions. We formulate the multi-agent navigation problem as an action-selection problem and propose an approach, ALAN, that allows agents to compute time-efficient and collision-free motions. ALAN is highly scalable because each agent makes its own decisions on how to move, using a set of velocities optimized for a variety of navigation tasks. Experimental results show that agents using ALAN, in general, reach their destinations faster than using ORCA, a state-of-the-art collision avoidance framework, and two other navigation models. 
    more » « less